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Agenda

® 01 —What is Al, Machine Learning and Deep Learning?
» 02 — Applications of Deep Learning

® 03 — Getting Start with Deep Learning



BIG Google DeepMind [2016]

ENGINEERING

00:08:32

kS

AlphaG

Google DeepMind

4 Reference

LEE SEDOL

00:00:02

Technology and Engineering


https://www.youtube.com/watch?time_continue=20283&v=qUAmTYHEyM8
https://www.youtube.com/watch?time_continue=20283&v=qUAmTYHEyM8
https://www.youtube.com/watch?time_continue=20283&v=qUAmTYHEyM8

BIG Self-Driving Cars
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https://www.geospatialworld.net/news/toyota-to-invest-2-8-billion-in-self-driving-car-project/
https://www.geospatialworld.net/news/toyota-to-invest-2-8-billion-in-self-driving-car-project/
https://www.geospatialworld.net/news/toyota-to-invest-2-8-billion-in-self-driving-car-project/

\
rég Real-time Face Recognition [2018]
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Short-range Face Capturing / Recognition

ScNSciilfMec & M B 1= s
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https://www.youtube.com/watch?v=wMUmPumXtpw
https://www.youtube.com/watch?v=wMUmPumXtpw
https://www.youtube.com/watch?v=wMUmPumXtpw
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WHAT IS Al, MACHINE LEARNING
AND DEEP LEARNING?



BIG What Makes a Machine Intelligent?
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While Al is the headliner, there are actually subsets of the technology which can
be applied to solving human problems in different ways.

Artificial Intelligence (AD) ===+ sssssssss

A process where a computer solves

++++++ Machine Learning (ML)

_ e ol - Algorithms that allow computers
u Vior. . . 5
Al—when a machine I Artificial Intelligence being explicitly programmed.

trained to do one particular

task—is becoming more {é}
widely used, from virtual
assistants to self-driving Machine Learning

cars to automatic tagging
your friends in your
photos on Facebook.

«+ Deep Learning (DL)

A subset of ML which uses

deep artificial neural networks
as models and does not —
require feature engineering. Cl 1=

College of Innovative
Technology and Engineering

By Curt Hopkins, Managing Editor, Hewlett Packard Labs



ElI€y Machine Learning: Problem Types
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Classification Regression
(supervised — predictive) (supervised — predictive)
Wiki .':-.'0 B
— | —>| .. - S
— o og°

time
Clustering Anomaly Detection
(unsupervised — descriptive) (unsupervised— descriptive)

Cl 1 =
9  Reference colmor innovanE


https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

CIIBEE Machine Learning: Classification Algorithms

Nearest Neighbors

DHURAKIJ PUNDIT
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Linear SVM Decision Tree

Naive Bayes

L
= ‘3:0}. o % 0::630 %
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Nearest Neighbors Decision Tree
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Decision Tree
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https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

i€y What is Deep Learning?
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* A subset of machine learning field

e Uses deep artificial neural networks as models

* Does not require feature engineering

Ig Feature Tradltlpnal
Learning

Engineering

Input Data Algorithm

Costs lots of time

Deep

s

Input Data

Learning
Algorithm

11 Cll=
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ElI€h Hype or Reality?

| have worked all my life in Machine Learning, and I've never seen one

algorithm knock over benchmarks like Deep Learning
— Andrew Ng (Stanford & Baidu)

Deep Learning is an algorithm which has no theoretical limitations
of what it can learn; the more data you give and the more
computational time you provide, the better it IS - Geoffrey Hinton (Google)

Human-level artificial intelligence has the potential to help humanity

thrive more than any invention that has come before it - Dileep George
(Co-Founder Vicarious)

For a very long time it will be a complementary tool that human
scientists and human experts can use to help them with the things
that humans are not naturally good - pemis Hassabis (Co-Founder DeepMind)
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https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
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The “one learning algorithm” hypothesis

Somatosensory cortex learns to see

[Roe et al., 1992] [Metin & Frost, 1989] TP



ElIIEh  Neurons in the Brain VS Artificial Neurons
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impulses carried axon from a neuro=n. s
toward cell body WoZTo

branches
dendrites \‘-,/ ﬁ/ of axon cell body f (Z“"’- , b)
\Q \/ w1 i
V > Zw,z, + b f >

\N\D, \/ ’f“’O axon output axon

activation
function
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Z?Zﬁ\x\ impulses carried ﬁ

away from cell body

cell body

W4
S0
s
NS
’r;‘x‘ar’x‘
;:Iiiiiiiiiiiliill)

<
4

output layer

N
-’f
(U

input layer

hidden layer 1 hidden layer 2

14 Reference Artificial Neural Networks CUT’=


https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

Z( wo

® synapse
axon from a neuron

c|.3a|§E', Non-linear Activation Function
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output axon

activation
function

5_ .....................................................................................
== sigmoid : :
4r RelU | RELU, maX(O, X)

== softplus

" used by most deep networks
" much faster training time
= prevent gradient vanishing problem

Cl | =
15 Reference Som ot inovavE—


https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

ClICh Artificial Neural Networks: The Training Process
Forward Propagation
= Sample labeled data (x1, x2, x3, Y)

p
‘ Y" '« Forwardit through the network

utput layer to get predictions (yP)

Backward Propagation
= Compute the Error (Y —yP)
= Update the connection weight using

gradient descent
output layer

input layer ClIT=
16 hidden layer 1 hidden layer 2 ST L B



CI.BE.ItC;'. Gradient Descent
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Loss(w)

17 Reference

Imagine you are in a pitch dark field

and want to find the lowest point
= Feel the ground to see how it slopes

= Take a small step downhill
(learning rate)
= Repeat until it is uphill in every direction

Update each weight (w)
Wnew = W — (learning rate * slope)

Technology and Engineering


https://www.datacamp.com/courses/deep-learning-in-python
https://www.datacamp.com/courses/deep-learning-in-python
https://www.datacamp.com/courses/deep-learning-in-python

ElI€h Vanishing Gradient in Deep Networks

=N GIIN = 1R IN (G (e

—)
—)
—)
: output layer
input layer :
:  hidden layer hidden layer hidden layer --------- hidden layer
1 2 3 N

* Connection weights of the first couple hidden layers have never been updated.
= Unfortunately, they are random weights.

* In 2006, Geoff Hinton et. al. showed how a many-layered neural networks could be
effectively pre-trained one layer at a time, treating each layer in turn as an
unsupervised restricted Boltzmann machine, then fine-tuning it using supervised

18 backpropagation. ClT=
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A brief History of ANNs

EConvqution Neural Networks for Google Brain Project on
:  Handwritten Recognltlon 16k Cores
1958 Perceptron 1974 Backpropagation 2012

awkward silence (Al Winter) |

1969 1995 | 2006 2012
Perceptron criticized SVM reigns i Restricted i AlexNet wins
Boltzmann ImageNet

Machine :

IMAGENET

: CU‘T—
9 Reference : Soee o Iyt



https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

SI€Y Inspired by the Visual Cortex Brain
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In the visual cortex:

IVIOIOE Cormimana

Categorical judgments, - _ , . .
decision making ha-s 'i"" - smpevsisliom e The first hierarchy of neurons (V1) are
120-160 ms _ ' .l .
m/c | sensitive to specific edges, corners.

/ \.

* The brain regions further down the visual
pipeline (PIT, AIT) are sensitive to more
complex structure such as faces, objects.

High level object

descriptions,
WP => Convolutional Nueral Networks (CNNs)
~~———> To spinal cord
<« Tofingermuscle - —160-220 ms [Ya NN Lecu n, 1998]
180-260 ms
20 Cl 1T =
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https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

c|.3a|§E', CNNs Architecture
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‘-- Visual cortex

e Consists of a hierarchy of layers

* The output layer makes predictions

10 mm

7]
wm—»“cat”

Cl 1 =
21 Reference colmor innovanE


https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

C|.3E,|§E', CNNs Architecture
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* Each layer transforms input data
into more abstract representation .
(e.g. edge -> nose-> face).

* The output layer combines those
features to make predictions.

College of Innovative
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https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

¥
CNNs:
]
data % 13 13 13
ENGINEERING
DHURAKIJ PUNDIT g —
UNIVERSITY PR S — 3 = EhS
| P 35: i 13 ﬁ: Laret 13 3& - 13 dense dense
L 27 Al 3 e
3 3 -
384 384 256
256 Max 4096
Max Max pooling
pooling pooling
~ 7 Numerical Data-driven

cock
3]qe) Sutuuip

ship

21015 A120013

&

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fc8: Object Classes

Convolutional Layer Pooling Layers
e |sa feature detector ¢ Compute MaXx Or average Value Of d

* Learn to filter out not needed info particular feature over a region

using kernels * Downsizing input images

Cl 1 =
23 Reference colmor innovanE


https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
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INDIT
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32

Reference

Convolutional Layer

32x32x3 image
ox5x3 filter w

Y

Example:

"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wliz +0b

Technology and Engineering


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

25

Pooling Layer

Single depth slice

1112 | 4
5|6 |78
31210
1123 | 4

Reference

max pool with 2x2 filters

and stride 2 §)

|

 Preserve the features

* Account for possible textures or distortions

e Reduce the feature size
* Prevent overfitting

Technology and Engineering


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

;
rI;iG Typical CNNs Architecture:

dat=

ENGINEER

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV 1CONV1

.

Vvl b e

;:'afitplane
Ship

horse

1y 03 13 6 197 %0 1

!
L

AEEIEEEERE

[
AR, 4

26 Reference



http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

BiG CNNs Architecture:

data
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! Softmax |
FC 1000
CSoffimax__] FC 4006
FC 1000 FC 4006
FC 4006 Pool

FC 4006 3X3 CONV. 512

Pool 3x3 conv. 512

3x3 conv, 512 3x3 conv, 512

=
N

a0
%] N K]

3X3 conv., !

O
Rt

3X3 conv,

Pool

Revolution of Depth 28.2

3x3 conv, 512

G 04 - |
3x3 conv, 512 512 152 layers
3x3 conv, 512 ‘ A
= o= \
Pool Pool \
\
3x3 conv, 256 3x3 conv, 256 . 16.4
3x3 conv. 256 3x3 conv, 256 b
Pool Pool k
X3 Conv. 108 X3 conv. 108 | 220ayers || 19 layers |
e e — \ 6.7 7.3
3x3 conv, 128 3x3 conv, 128 ;R

Pool

3x3 conv. 64

e

3X3 Conv,

[®)]
e

N l I

ILSVRC'15|] ILSVRC'14  ILSVRC'14 | ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

==
VGG1 6 VGG1 9 Goog LeNet Figure copyright Kaiming He, 2016. Reproduced with permission.

3x3 conv, 64

(©)]
~

3X3 Conv.
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l
|
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|
l
|
1
|
|
|
l
_3x3 conv, ?
|
|
|
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|
|
|
|
|
|
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3x3 conv, 512 |
|
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J
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J
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Input Input

!
27 Reference SOt o


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
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APPLICATIONS OF DEEP LEARNING

*COMPUTER VISION
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Object Classification

UNIVERSITY

{

mite
black widow
cockroach

starfish

pickup jelly fungus ddubury titi
beach wagon ﬁll fungus mm indri
fire engine howler monkey
o
29 Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. coliegestinnovatve, T
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30

Image Retrieval

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A

e
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E,D;!g TensorFlow Object Detection API [2016]
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31 f==sseei

Detected objects in a sample image (from the dataset) made by one of our models. Image credit: , R iy and Ergiesing


http://mscoco.org/
https://www.flickr.com/photos/mike_miley/
https://www.flickr.com/photos/mike_miley/
https://www.flickr.com/photos/mike_miley/4678754542/in/photolist-88rQHL-88oBVp-88oC2B-88rS6J-88rSqm-88oBLv-88oBC4

BIG YOLOv3: Real-time Object Detection [2018]

ENGINEERING

YOLOv3-608

* mAP: 57.9
* FPS: 20

32 I {efe re n Ce College of Innovative
Technology and Engineering


https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

!;2!&-, Image Segmentation
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- 'l ..
. ' ﬂl.'. !m.‘.
1814 0 ) .
C. y

& -
Figures copyright Clement Farabet, 2012.

33 Raproduced with permission. [Farabet et al., 2012] Cll=
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https://github.com/karolmajek/Mask_RCNN
https://github.com/karolmajek/Mask_RCNN
https://github.com/karolmajek/Mask_RCNN

Ellck.  Mask R-CNN:

data

ENGINEERING

35 Reference Clir=
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https://www.youtube.com/watch?v=KYNDzlcQMWA
https://www.youtube.com/watch?v=KYNDzlcQMWA
https://www.youtube.com/watch?v=KYNDzlcQMWA

BIG

== [Vly Research Topics:

ENGINEERING

Alcohol Brand Logos Classification

ICDAMT 2018 conference

* CNNs
4 Thai alcohol brands

vs Non-alcohol
=« Accuracy: 89.16%

A
C ” O
36 n .
College of Innovative

Technology and Engineering
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== [Vly Research Topics:

ENGINEERING

Facial Expressions Recognition

.,

PG

JCSSE 2018 conference

* XCEPTION
» 7 facial expressions

Dk
L

* Accuracy
=Our model: 71.69%
*Human: 65-70%

iy ey sy e
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BlG My Research Topics:

ENGINEERING

Buddha Amulets Classification

LPK

PSW LPT PKP LPS

Submitted to KSE 2018 conf

* CNNs: 15 layers
* 34.5 M parameters

Incorrect

e 10 famous editions
* Accuracy: ~91%

38

Technology and Engineering
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APPLICATIONS OF DEEP LEARNING

*SEQUENCE DATA, TIME SERIES
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===8 Recurrent Neural Networks (RNNs):

ENGINEERING
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one to one one to many many to one many to many many to many
Output(s)
! bt i Pt Pt
N N W H N N RNNs
! ! bt Pt N
Input(s)

* Learn algorithms to map input sequences to output sequences
(flexible-sized vectors).

* The output vector’s content are influenced by the entirely of inputs.

40 Refe re n Ce College of Innovative
Technology and Engineering


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

BiG Long Short-Term Memory RNNs (LSTM)

ENGINEERING

{ 1 f
f W W B
—>— @ == - -+
A Lebelll A
\J /* /’\ J—’

&) © &)

 LSTM contains memory cells with read, write and reset operations.
 The network can learn
* when it should remember data =>Long term

e when it should throw it away (forget) =>Short term
21 Reference Cll =
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https://selfdrivingcars.mit.edu/
https://selfdrivingcars.mit.edu/
https://selfdrivingcars.mit.edu/

BIG

== |mage Captioning:

ENGINEERING

onite many “straw” “hat”

START “straw” “hat”

22 Reference Clir=
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https://selfdrivingcars.mit.edu/
https://selfdrivingcars.mit.edu/
https://selfdrivingcars.mit.edu/

ElIICh  Natural Language Processing- Embeddings

ENGINEERING

e Turn textual data (words,

\/‘Pari s sentences, paragraphs)
A— into high dimension vector
o) A representation
Camera \ —J * Can group them together
SeaWorLd with semantically data in
vectorspace
, dotphih
FOY‘FOLSQ

23 Reference Clrr=
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https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction
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many to one

25 Reference

T+

Don't fly with @ British_ Airways.
They can't keep track of your
luggage.

S S Following

Happy Birthday to my best friend, the ¥of
my life, my soul!!!! I love you beyond words!

\
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C|,3E,|§E', Machine Translation:

ENGINEERING

Awesome sauce
many to many y IT ’in
@ L
P11 . | @ ®
11 0 2o e
- @ O O
X1 X, X3
0000| (ec0e| |0000)]
Echt dicke Kiste
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ENEL Generating Text:
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{

target chars: ‘e’ I i ‘0" :
Life Is About The Weather!
ANy 10 meny 10 0 o . Life Is About The True Love Of Mr. Mom
output layer S 1.0 1.9 0.1 Life Is About Kids
4.1 12 -1.1 2.2 Life Is About An Eating Story
Life Is About The Truth Now
£y | T T [ why
0.3 1.0 0.1 [w hnl-03
> [ [ hidden layer | -0.1 > 0.3 » -05 — 0.9
0.9 0.1 -0.3 0.7 _ -
The meaning of life is
T T T I T T TW_Xh literary recognition
_ (1) (1) 8 8 The meaning of life is
input layer I 0 1 : the tradition of the ancient human
0 0 0 0 reproduction
input chars: “h” “e” g L

Andrej Karpathy. “The Unreasonable Effectiveness
of Recurrent Neural Networks." (2015).
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c|,3a!,£=;', Usage Requirements

ENGINEERING

e Large dataset with good quality (input-output mappings)

 Measurable and describable goals (define the cost)

* Enough computing power (AWS GPU Instance)

* Excels in tasks where the basic unit (pixel, word) has very
little meaning in itself, but the combination of such units
has a useful meaning
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== Step O: Pre-requisites

ENGINEERING

e Basics of Math
Resource :

Especially Calculus, Probability and Linear Algebra)
* Basics of Python

Resource: )
* Basics of Statistics

Resource: )
* Basics of Machine Learning

Resource:

s0  Reference Clir=
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== Step 1: Setup Google ColLab

ENGINEERING

* Google’s free cloud service for Al developers

" improve your Python programming language coding skills

* Develop deep learning applications on the GPU for free

" using popular libraries such as Keras, TensorFlow, PyTorch, and OpenCV

* Google Colab Free GPU Tutorial:

https://medium.com/deep-learning-turkey/google-colab-free-gpu-
tutorial-e113627b9f5d
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BIG

=r=81 Step 2: Basic Deep Learning

ENGINEERING

* CS231n: Convolutional Neural Networks for Visual Recognition
[http://cs231n.stanford.edu/2017/syllabus.html]

= |ntroduction to Neural Networks
" Loss Functions and Optimization
= CNNs, RNNs, LSTM

* Popular Libraries:
= TensorFlow (using Keras => Recommended)
= Caffe

= Torch
52 Reference Clr=
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== Step 3: Advanced Deep Learning

ENGINEERING

* Deep Learning for Computer Vision

Primer : blog.
Project : Tutorial
Required libraries :

Associated Course :

* Deep Learning for Natural Language
ProcessingPrimer : blog.
Project : “Deep Learning for Chatbots”: ,
Required library :
Associated Course :
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http://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/
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https://github.com/dnouri/nolearn
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
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-4  Step 4: Setup your own Machine (optional)

ENGINEERING

* A good enough GPU (4+ GB), preferably Nvidia
* An OK CPU (e.g. Intel Core i3 is ok, Intel Pentium may not be OK)
* 16 GB of RAM or depending upon the dataset.

* Power supply (+100 to 120 w)
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Which GPU(s) to Get?

Best GPU overall (by a small margin): Titan Xp

Cost efficient but expensive: GTX 1080 Ti, GTX 1070, GTX 1080

Cost efficient and cheap: GTX 1060 (6GB)

| work with data sets > 250GB: GTX Titan X (Maxwell), NVIDIA Titan X Pascal, or
NVIDIA Titan Xp

| have little money: GTX 1060 (6GB)

| have almost no money: GTX 1050 Ti (4GB)

| do Kaggle: GTX 1060 (6GB) for any “‘normal” competition, or GTX 1080 Tifor “deep
learning competitions”

| am a competitive computer vision researcher: NVIDIA Titan Xp; do not upgrade from
existing Titan X (Pascal or Maxwell)

| am aresearcher: GTX 1080 Ti. In some cases, like natural language processing, a GTX
1070 or GTX 1080 might also be a solid choice — check the memory requirements of
your current models

| want to build a GPU cluster: This is really complicated, you can get some ideas here

| started deep learning and | am serious about it: Start with a GTX 1060 (6GB).

Depending of what area you choose next (startup, Kaggle, research, applied deep

learning) sell your GTX 1060 and buy something more appropriate
| want to try deep learning, but | am not serious about it: GTX 1050 Ti (4 or 2GB) CUT—
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