Deep Learning

Concepts and Its Applications

Thanapat Kangkachit, Ph.D.

Master of Engineering (Big Data Engineering) College of Innovative Technology and Engineering (CITE

About Me

Name: Thanapat Kangkachit ธนภัทร ฆังคะจิตร

Work: Lecturer at Big Data Engineering, CITE, DPU since 2017

Education:

- Ph.D. in Computer Engineering, Kasetsart University
- M.Eng. in Computer Engineering, Kasetsart University
- B.Eng. in Computer Engineering, Kasetsart University

Agenda

01 – What is AI, Machine Learning and Deep Learning?
 02 – Applications of Deep Learning
 03 – Getting Start with Deep Learning

Google DeepMind [2016]

Self-Driving Cars

Real-time Face Recognition [2018]

Short-range Face Capturing / Recognition

College of Innovative Technology and Engineering

01 What is AI, Machine Learning and Deep Learning?

What Makes a Machine Intelligent?

While AI is the headliner, there are actually subsets of the technology which can be applied to solving human problems in different ways.

By Curt Hopkins, Managing Editor, Hewlett Packard Labs

Machine Learning: Problem Types

Classification (supervised – predictive) Regression (supervised – predictive)

Clustering (unsupervised – descriptive)

time

Anomaly Detection (unsupervised – descriptive)

Machine Learning: Classification Algorithms

Nearest Neighbors

Nearest Neighbors

Linear SVM

Linear SVM

Linear SVM

Decision Tree

Decision Tree

Decision Tree

.80

.93

Naive Bayes

Naive Bayes

Reference [4]

What is Deep Learning?

- A subset of machine learning field
- Uses deep artificial neural networks as models
- Does not require feature engineering

Hype or Reality?

I have worked all my life in Machine Learning, and I've never seen one algorithm knock over benchmarks like Deep Learning – Andrew Ng (Stanford & Baidu)

Deep Learning is an algorithm which has no theoretical limitations of what it can learn; the more data you give and the more computational time you provide, the better it is – *Geoffrey Hinton (Google)*

Human-level artificial intelligence has the potential to help humanity thrive more than any invention that has come before it – *Dileep George* (Co-Founder Vicarious)

Reference [4]

For a very long time it will be a complementary tool that human scientists and human experts can use to help them with the things that humans are not naturally good – *Demis Hassabis (Co-Founder DeepMind)*

The "one learning algorithm" hypothesis

[Metin & Frost, 1989]

[Roe et al., 1992]

Neurons in the Brain VS Artificial Neurons

Technology and Engineering

Non-linear Activation Function

ReLU, max(0, x)

- used by most deep networks
- much faster training time
- prevent gradient vanishing problem

Artificial Neural Networks: The Training Process

Forward Propagation

- Sample labeled data (x1, x2, x3, Y)
- Forward it through the network

to get **predictions (y^p)**

hidden layer 1 hidden layer 2

Backward Propagation

- Compute the Error (Y y^p)
- Update the connection weight using gradient descent

Gradient Descent

Imagine you are in a pitch dark field and want to find the **lowest point**

- Feel the ground to see how it slopes
- Take a small step downhill (learning rate)
- Repeat until it is uphill in every direction

Update each weight (w)

wnew = w - (learning rate * slope)

- Connection weights of the first couple hidden layers have never been updated.
 - Unfortunately, they are random weights.
- In 2006, Geoff Hinton et. al. showed how a many-layered neural networks could be effectively pre-trained one layer at a time, treating each layer in turn as an unsupervised restricted Boltzmann machine, then fine-tuning it using supervised backpropagation.

echnology and Engineering

19

A brief History of ANNs

20

Reference [4]

Inspired by the Visual Cortex Brain

In the visual cortex:

- The first hierarchy of neurons (V1) are sensitive to specific edges, corners.
- The brain regions further down the visual pipeline (PIT, AIT) are sensitive to more complex structure such as faces, objects.

=> Convolutional Nueral Networks (CNNs) [Yann Lecun, 1998]

CNNs Architecture

- Consists of a hierarchy of layers •
- The output layer makes predictions ullet

CNNs Architecture

- Each layer transforms input data into more abstract representation (e.g. edge -> nose-> face).
- The **output layer** combines those features to make **predictions**.

22

Convolutional Layer

Reference [4]

23

- Is a feature detector
- Learn to filter out not needed info using kernels

Pooling Layers

- compute max or average value of a particular feature over a region
- Downsizing input images

Convolutional Layer

Single depth slice

y

max pool with 2x2 filters and stride 2

- Preserve the features
- Account for possible textures or distortions
- Reduce the feature size
 - Prevent overfitting

Х

CNNs Architecture:

02 Applications of Deep Learning

***COMPUTER VISION**

02 June 2018

Object Classification

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	Contraction of the second se	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

Image Retrieval

TensorFlow Object Detection API [2016]

YOLOv3: Real-time Object Detection [2018]

YOLOv3-608
• mAP: 57.9
• FPS: 20

Image Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Mask R-CNN: Object Detection & Segmentation

Facebook research

2017

Mask R-CNN: pose estimation & instance segmentation

My Research Topics:

Alcohol Brand Logos Classification

ICDAMT 2018 conference

- CNNs
- 4 Thai alcohol brands
 vs Non-alcohol
- Accuracy: **89.16%**

My Research Topics:

Facial Expressions Recognition

JCSSE 2018 conference

- XCEPTION
- 7 facial expressions
- Accuracy
 - Our model: 71.69%Human: 65-70%

My Research Topics:

Buddha Amulets Classification

Submitted to KSE 2018 conf

- CNNs: 15 layers
- 34.5 M parameters
- 10 famous editions
- Accuracy: ~91%

02

APPLICATIONS OF DEEP LEARNING

*SEQUENCE DATA, TIME SERIES

02 June 2018

Recurrent Neural Networks (RNNs):

- Learn algorithms to **map input sequences to output sequences** (flexible-sized vectors).
- The **output** vector's content are **influenced** by the **entirely of inputs**.

Long Short-Term Memory RNNs (LSTM)

- LSTM contains memory cells with read, write and reset operations.
- The network can learn
 - when it should remember data =>Long term
 - when it should throw it away (forget) =>Short term

Natural Language Processing- Embeddings

- Turn textual data (words, sentences, paragraphs) into high dimension vector representation
- Can group them together with semantically data in vectorspace

44

College of Innovative Technology and Engineering

Sentiment Analysis:

many to one

Don't fly with @British_Airways. They can't keep track of your luggage.

Following

Happy Birthday to my best friend, the ♥of my life, my soul!!!! I love you beyond words! instagram.com/p/aTgfI-OS-a/

Machine Translation:

46 Reference [11]

Generating Text:

Life Is About The Weather! Life Is About The True Love Of Mr. Mom Life Is About Kids Life Is About An Eating Story Life Is About The Truth Now

The meaning of life is literary recognition

The meaning of life is the tradition of the ancient human reproduction

Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural Networks." (2015).

Usage Requirements

- Large dataset with good quality (input-output mappings)
- Measurable and describable goals (define the cost)
- Enough computing power (AWS GPU Instance)
- Excels in tasks where the basic unit (pixel, word) has very little meaning in itself, but the combination of such units has a useful meaning

03

GET STARTED WITH DEEP LEARNING

Step 0: Pre-requisites

Basics of Math

Resource : <u>"Math | Khan academy"</u>

Especially Calculus, Probability and Linear Algebra)

• Basics of Python

Resource: <u>"Intro to Computer Science", edX course</u>)

• Basics of Statistics

Resource: "Intro to Stats", Udacity course)

• Basics of Machine Learning

Resource: "Intro to Machine Learning", Udacity course

Step 1: Setup Google CoLab

- Google's free cloud service for AI developers
 - improve your Python programming language coding skills
- Develop deep learning applications on the **GPU for free**
 - using popular libraries such as Keras, TensorFlow, PyTorch, and OpenCV
- Google CoLab Free GPU **Tutorial**:

https://medium.com/deep-learning-turkey/google-colab-free-gpututorial-e113627b9f5d

Step 2: Basic Deep Learning

- CS231n: Convolutional Neural Networks for Visual Recognition [http://cs231n.stanford.edu/2017/syllabus.html]
 - Introduction to Neural Networks
 - Loss Functions and Optimization
 - CNNs, RNNs, LSTM
- Popular Libraries:
 - TensorFlow (using Keras => Recommended)
 - Caffe
 - Torch

Step 3: Advanced Deep Learning

Deep Learning for Computer Vision

Primer : <u>"DL for Computer Vision"</u> blog. Project : <u>"Facial Keypoint Detection"</u> Tutorial Required libraries : <u>Nolearn</u> Associated Course : <u>"CS231n: Convolutional Neural Networks for Visual Recognition"</u>

• Deep Learning for Natural Language

ProcessingPrimer : <u>"Deep Learning, NLP, and Representations</u>" blog. Project : "Deep Learning for Chatbots": <u>"Part 1</u>", <u>"Part 2</u>" Required library : <u>Tensorflow</u> Associated Course : <u>"CS224d: Deep Learning for Natural Language Processing</u>"

Step 4: Setup your own Machine (optional)

- A good enough **GPU** (4+ GB), preferably **Nvidia**
- An **OK CPU** (e.g. Intel Core i3 is ok, Intel Pentium may not be OK)
- 16 GB of RAM or depending upon the dataset.
- Power supply (+100 to 120 w)

Which GPU(s) to Get?

Best GPU overall (by a small margin): Titan Xp Cost efficient but expensive: GTX 1080 Ti, GTX 1070, GTX 1080 Cost efficient and cheap: GTX 1060 (6GB) I work with data sets > 250GB: GTX Titan X (Maxwell), NVIDIA Titan X Pascal, or NVIDIA Titan Xp I have little money: GTX 1060 (6GB) I have almost no money: GTX 1050 Ti (4GB) I do Kaggle: GTX 1060 (6GB) for any "normal" competition, or GTX 1080 Ti for "deep learning competitions" I am a competitive computer vision researcher: NVIDIA Titan Xp; do not upgrade from existing Titan X (Pascal or Maxwell) I am a researcher: GTX 1080 Ti. In some cases, like natural language processing, a GTX 1070 or GTX 1080 might also be a solid choice — check the memory requirements of your current models I want to build a GPU cluster: This is really complicated, you can get some ideas here I started deep learning and I am serious about it: Start with a GTX 1060 (6GB). Depending of what area you choose next (startup, Kaggle, research, applied deep learning) sell your GTX 1060 and buy something more appropriate

I want to try deep learning, but I am not serious about it: GTX 1050 Ti (4 or 2GB)

Reference [13]

Thank You!

References

- [1] <u>https://www.youtube.com/watch?time_continue=20283&v=qUAmTYHEyM8</u>
 [2] <u>https://www.geospatialworld.net/news/toyota-to-invest-2-8-billion-in-self-driving-car-project/</u>
- [3] <u>https://www.youtube.com/watch?v=wMUmPumXtpw</u>
- [4] <u>https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction</u>
- [5] <u>https://www.datacamp.com/courses/deep-learning-in-python</u>
- [6] http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture5.pdf
- [7] <u>https://pjreddie.com/darknet/yolo/</u>
- [8] https://github.com/karolmajek/Mask RCNN
- [9] <u>https://www.youtube.com/watch?v=KYNDzlcQMWA</u>
- [10] http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture10.pdf
- [11] https://selfdrivingcars.mit.edu/
- [12] https://www.analyticsvidhya.com/blog/2016/08/deep-learning-path/

